High-quality non-blind image deconvolution with adaptive regularization

نویسندگان

  • Jong-Ho Lee
  • Yo-Sung Ho
چکیده

1047-3203/$ see front matter 2011 Elsevier Inc. A doi:10.1016/j.jvcir.2011.07.010 ⇑ Corresponding author. E-mail addresses: [email protected] (J.-H. Lee Non-blind image deconvolution is a process that obtains a sharp latent image from a blurred image when a point spread function (PSF) is known. However, ringing and noise amplification are inevitable artifacts in image deconvolution since perfect PSF estimation is impossible. The conventional regularization to reduce these artifacts cannot preserve image details in the deconvolved image when PSF estimation error is large, so strong regularization is needed. We propose a non-blind image deconvolution method which preserves image details, while suppressing ringing and noise artifacts by controlling regularization strength according to local characteristics of the image. In addition, the proposed method is performed fast with fast Fourier transforms so that it can be a practical solution to image deblurring problems. From experimental results, we have verified that the proposed method restored the sharp latent image with significantly reduced artifacts and it was performed fast compared to other non-blind image deconvolution methods. 2011 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions

Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...

متن کامل

Non-blind Image Deconvolution with Adaptive Regularization

Ringing and noise amplification are the most dominant artifacts in image deconvolution. These artifacts can be reduced by introducing image prior into the deconvolution process. A regularization weighting factor can control strength of the regularization. Ringing and noise can be reduced significantly with the strong weighting factor, but details can be lost. We propose a nonblind image deconvo...

متن کامل

Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive opt...

متن کامل

Progressive Blind Deconvolution

We present a novel progressive framework for blind image restoration. Common blind restoration schemes first estimate the blur kernel, then employ non-blind deblurring. However, despite recent progress, the accuracy of PSF estimation is limited. Furthermore, the outcome of non-blind deblurring is highly sensitive to errors in the assumed PSF. Therefore, high quality blind deblurring has remaine...

متن کامل

1 Mathematical models and practical solvers for uniform motion deblurring

Recovering an un-blurred image from a single motion-blurred picture has long been a fundamental research problem. If one assumes that the blur kernel – or point spread function (PSF) – is shift invariant, the problem reduces to that of image deconvolution. Image deconvolution can be further categorized as non-blind and blind. In non-blind deconvolution, the motion blur kernel is assumed to be k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Visual Communication and Image Representation

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2011